May 2018 is the warmest on record


8341.png
NOAA details notable climate events for May 2018 (NOAA)

Eden DeWald | June 6th, 2018

May 2018 is the warmest month of May ever recorded in the United States according to the National Oceanic and Atmospheric Administration. It broke the long held record, which was set back in 1934, during the Dust Bowl. The average temperature recorded in May 2018 was 65.4 degrees, compared to the 64.7 degree average from May 1934.

However, temperatures didn’t just increase on the average, 8,590 daily record breaking highs were set across the United States. Including a notable 100 degree temperature spike for Minneapolis on May 28th, which is the earliest date that a triple digit temperate has been reached for Minneapolis.

Precipitation records for May 2018 also paint a curious picture. The May 2018 average precipitation of 2.97 inches is slightly above the general May average of 2.91 inches. However, more than one-fourth of the United States landmass were under drought conditions. Some areas even experienced record breaking precipitation, such as Florida and Maryland. This data aligns with recent information from NASA, which foresees wet areas getting wetter and dry areas becoming drier due to a combination of human impact, natural water cycles, and climate change.

 

 

Climate change and wild spring weather


448189871_02e4c5caa3_b
The Greenland block is a high pressure atmospheric block that hangs above Greenland and affects weather moving down to lower latitudes. (flickr/Stig Nygaard)

Jenna Ladd | April 18, 2018

By-in-large, spring weather has been arriving earlier each year in the United States. For instance, the frost-free season was 10 days longer between 1991 and 2011 than it was from 1901 to 1960.

This may come as a shock to Midwesterners, who saw several inches of snow fall this Sunday, April 15th. So what’s going on?

Among some other factors, the Greenland Block has a lot to do with the snowy spring of 2018, according to Dr. David Mechem of the University of Kansas. Mechem, a professor of geography and atmospheric science, explained that there is a persistent atmospheric area of high pressure above Greenland which funnels cold air from the poles straight into the mid-latitudes of North America. He told KCUR that the block was in place throughout February and March and is finally starting to break down, which would bring long-awaited warmer temperatures to the midwest.

Further research is needed to establish exactly what kind of effect climate change has on spring weather, but scientists are noticing some changes. Winter storms (even if they happen in April) have increased in frequency and intensity in the Northern hemisphere since 1950 according to the National Climate Assessment. Nor’easter winter storms plague the eastern U.S. and are caused by the the cold air from the Arctic and warm air from the Atlantic interplaying. This year, that region of the U.S. saw several Nor’easters in very quick succession, which is unusual. A recent study in the journal Nature Communications found that as the Arctic’s climate continues to warm at an alarming rate, winter storms becoming more likely in the eastern U.S.

The good news is that as the Greenland block continues to break down, residents of the mid-latitudes can expect spring to finally arrive. The bad news is that unpredictable spring weather can be expected to continue coming years as the climate continues to change.

“Frost-free” days increase, so does allergy season


2018FrostFree_desmoines_en_title_lg
Climate Central’s graph illustrates how the number of frost-free days in Des Moines has increased over time. (Climate Central)
Jenna Ladd | April 11, 2018

Given that spring snow fell across Iowa this weekend, it may be hard to believe that the frost-free season across the U.S. is actually getting longer.

A recent report found that, on average, the last spring freeze is occurring earlier while the first fall freeze is happening later. Researchers define the frost-free season as the total number of days between the last day of 32 degree Fahrenheit or lower weather in the spring and the first day of 32 degree Fahrenheit weather in the fall.

The lengthening of this season means that pollen-producing plants have a longer growing period. One study in particular found that the growing season for ragweed, a common allergen in the U.S., lengthened by two to four weeks between 1995 and 2009. This data was collected from ten sites from the southern U.S. through Canada. Iowa has added nine days to the average length of its frost-free season from 1986-2015 when compared with the average from 1901-1960.

Not only are allergy-causing plants benefiting from longer growing seasons, but an uptick in atmospheric carbon dioxide also increases pollen counts. Last year was the worst allergy season in recent record and experts expect this year to be similar.

Dr. Joseph Shapiro, an allergist and immunologist from California told CBS news, “A recent study showed that pollen counts are likely to double by the year 2040, so in a little more than 20 years we’re going to see a significant increase [in seasonal allergies].”

Climate Central’s recent report provides an interactive graph that allows users to select a U.S. city and see how the frost-free season’s length there may have changed since 1970.

Extreme weather costlier than ever in 2017


36145818535_8717d011b2_k

Jenna Ladd | March 28, 2018

As the Northern Hemisphere enters warmer seasons where severe weather and flooding are more likely, it is yet to be seen whether 2018 will top 2017 as the most costly year for natural disasters ever.

Since 1980, the yearly average for natural disasters in the U.S. that cause more than $1 billion in damages has been 5.8 events. Last year, the country saw 16 such events, including three tropical cyclones, eight severe storms, two inland floods, a crop freeze, drought and wildfire. While this number technically ties with 2011, 2017 had more extreme weather as wildfires are tallied by region rather than single events, and last year brought more wildfires costing upwards of $1 billion than ever before.

According to NOAA’s National Centers for Environmental Information, the total cost of severe weather last year was $306.2 billion. This surpassed the previous record by nearly $100 billion dollars. Hurricanes Harvey, Irma and Maria caused $265.0 billion of 2017’s damages. Researchers figure physical damages to buildings and infrastructure as well as crop damages and losses to business into the total cost.

The midwest U.S. saw at least two severe storms last year that caused more than $1 billion in damages, both of them in mid-June. Flooding associated with storms like these has caused some $13.5 billion in economic losses from 1988 to 2015 in Iowa alone, according to a recent op-ed by Iowa Flood Center Director Witold Krajewski. Midwesterners also faced early tornado outbreaks in 2017, which tore across the region in late February and early March. Both events cause more than $1 billion in damages.

The National Centers for Environmental Information point out that increased development in vulnerable areas like coastlines, floodplains and fire-prone areas are causing the increase in billion dollar disasters. Climate change plays a role too. They write,

“Climate change is also paying an increasing role in the increasing frequency of some types of extreme weather that lead to billion-dollar disasters. Most notably the rise in vulnerability to drought, lengthening wildfire seasons and the potential for extremely heavy rainfall and inland flooding events are most acutely related to the influence of climate change.”

Climate change affects crop yields in varying ways


5532775128_de1eaf8b13_b
Soybeans are less sensitive to temperature and precipitation changes than corn plants. (Kevin Dooley/flickr)
Jenna Ladd | March 23, 2018

Researchers at the University of Nebraska recently published a study which details how climate change impacts crop yield variance on a hyper-local level.

The study analyzed U.S. Department of Agriculture data from more than 800 counties across North Dakota, South Dakota, Wyoming, Nebraska, Iowa, Colorado, Kansas, Oklahoma and Texas from 1968 through 2013. Collectively, they found that climate change caused about 25 percent of crop yield variance during that time. While temperature and precipitation changes were responsibile for 52 percent of crop fluctuations in some counties, they did not have any effect in others.

Similarly, the three crops that were studied: corn, soy and sorghum, all responded to the changing climate differently. Corn is more likely than the other two to be impacted by rising temperatures. When corn plants are not irrigated, yields are twice as likely to be harmed by increased temperatures. However, irrigated corn seemed to do relatively well in these conditions. Irrigated soy and sorghum plants were much less likely than non-irrigated plants to be negatively impacted by precipitation and temperature shifts too.

Suat Irmak and Meetpal Kukal are the study’s authors. They say that their work makes the case for continued climate change studies which consider different climate variables, crop types and growing conditions.

“I hope we are successful in getting across the message that there are changes in temperature and precipitation, (but) those changes are different over time and location, and they are having different impacts on our agricultural productivity,” Dr. Irmak said to the University of Nebraska. “That can help high-level advisers, decision-makers and policymakers to identify locations where those impacts are greatest so that resource allocation or re-allocation can make (fields) even more productive.”

The full study can be found in the journal Scientific Reports.

Extreme weather events more likely even if climate change is curtailed


SONY DSC
Parched soil in Illinois during the 2012 drought. (Thought Quotient/flickr)
Jenna Ladd | February 22, 2017

A study recently published in the journal Science Advances found that even if global climate change mitigation goals are met, extreme weather events will still occur more frequently in the future.

The United Nations Paris Climate Accord aims to keep global temperatures from increasing more than two degrees Celsius above pre-industrial levels. Even if the global community succeeds, human-induced climate change has already made extreme heatwaves, floods and droughts significantly more common.

Unfortunately, scientists say that the existing emission-reduction pledges by the world’s nations are not enough to keep temperatures from rising above 2 degrees Celsius. The study finds that if temperatures were to rise to 3 degrees hotter than preindustrial levels, North America would see at least a 300 percent increase in extreme weather events, for example.

Dr. Noah Diffenbaugh is a climate scientist at Stanford University and the study’s lead author. He said to the Scientific American, “In addition to not meeting the global temperature target, those commitments also imply substantial increase in the probability of record-setting events. Not only hot events but wet events, and also in other regions of the world, dry events as well.”

The study found that extreme heat records are the most likely to be affected by unabated climate change. Scientists focused primarily on North America, Western Europe and East Asia. They found that hotter-than-ever night time temperatures have been occurring much more frequently in recent years. If the climate warms to the 3 degree threshold, extreme heat events are expected to happen five times more frequently in half of Europe and at least three times more frequently in parts of Eastern Asia.

The study reads, “However, even if cumulative emissions are sufficiently constrained to ensure that global warming is held to 1° to 2°C, many areas are still likely to experience substantial increases in the probability of unprecedented [extreme weather] events.”

An interactive map created by researchers at Carbon Brief allows user to see which past extreme weather events can were cause by anthropogenic climate change and which were not.

Link between climate change and conflict questioned


12054805893_1492fb1787_o
The relationship between climate change and conflict has been studied in Kenya more than many other nations. (Viktor Dobai/flickr)

Jenna Ladd | February 15, 2018

It has been accepted in many scientific communities that climate change can lead to civil unrest and violence, but a recent editorial in the Journal Nature tells readers not to be so sure.

The editorial’s authors did a literature review of 124 studies which assessed the link between climate change and war or civil unrest. They claim to have found three kinds of sampling biases among the studies. First, researchers overwhelmingly looked at regions where violence was already happening or had happened recently. Second, they noted that the studies primarily included countries in Africa and left out other nations that have been severely impacted by climate change. Finally, the mostly-white, Western researchers usually chose to study countries that were easily accessible to them and where the locals spoke English; think countries like Kenya.

Tobias Ide studies peace and war at the Georg Eckert Institute for International Textbook Research and is one of the paper’s authors. He said to The Atlantic, “If we only look at places where violence is, can we learn anything about peaceful adaptation to climate change? And if we only look at those places where there is violence, do we tend to see a link because we are only focusing on the places where there is violence in the first place?”

Solomon Hsiang has been openly critical of the paper’s claims. Hsiang’s 2013 findings showed that for every standard deviation change in precipitation or temperature, the likelihood that an area will experience civil unrest rises by 14 percent. The University of California Berkeley economist and public policy professor said in an email to The Atlantic, “Studying conflict-prone regions isn’t a problem, it’s what you would expect. Nobody is studying Ebola outbreaks by studying why Ebola is not breaking out in cafés in Sydney today, we study what happened in West Africa when there was an actual event.”

Either way, the paper draws attention to the myriad opportunities for study of climate change and conflict in countries outside of Africa and the Middle East. Ide said, “I was a bit surprised that even within American studies, there’s not really a focus on Latin America, basically. You can be concerned about Iraq, Syria, or India because of geopolitical relevance—but why not look for [climate-related conflict] in Mexico, or Honduras, or Brazil? Because that would have much sharper consequences for the United States.”